

**Storage Stability of X-0298:
A Rubber-Bonded HMX-Based Explosive**

University of California

LOS ALAMOS NATIONAL LABORATORY

3 9338 00314 4424

DO NOT CIRCULATE

**PERMANENT RETENTION
REQUIRED BY CONTRACT**

LOS ALAMOS SCIENTIFIC LABORATORY

Post Office Box 1663 Los Alamos, New Mexico 87545

Edited by Elaine Stanlick
Photocomposition by Chris West

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

**UNITED STATES
DEPARTMENT OF ENERGY
CONTRACT W-7405-ENG. 36**

LA-8551-MS

UC-45

Issued: December 1980

Storage Stability of X-0298: A Rubber-Bonded HMX-Based Explosive

E. Dan Loughran

STORAGE STABILITY OF X-0298: A RUBBER-BONDED HMX-BASED EXPLOSIVE

by

E. Dan Loughran

ABSTRACT

We determined the storage stability at elevated temperatures of X-0298, a rubber-bonded HMX composition. After 34 months in sealed containers at 40, 50, and 60°C, physical properties of tensile specimens exhibited no significant degradation. Gas evolution rates from small cylinders of X-0298 stored in air-filled ampoules at 60, 75, and 90°C were 30, 80, and 1000 cm³/kg/yr. Compared with other energetic explosives, X-0298 is exceptionally stable when stored at temperatures below 60°C.

I. INTRODUCTION

The search for chemically stable, insensitive, energetic high explosives for military applications is a continuing effort. The requirements for long-term storage in a variety of environments limit the materials that can be used. Explosives such as PBX 9404, acceptable for past applications, do not have the stability and handling safety required for current weapon systems.

In the late 1960s, PBX 9501 was developed at the Los Alamos Scientific Laboratory (LASL) as a replacement for PBX 9404. PBX 9501 had greatly improved handling safety and reasonable chemical stability compared with PBX 9404.¹ However, the physical strength of pressed pieces decreased with time at elevated temperature to about 30% of the initial value² because of degradation of the polyurethane binder Estane 5703.* Deterioration of the physical strength of explosive charges does not exclude a material from all weapon systems, but its use in some systems is precluded. Thus, a binder that does not deteriorate at elevated temperatures in a PBX formulation is desirable.

Since 1974, LASL has investigated Kraton G1650,* a thermoplastic rubber, as a binder in high-explosive formulations. Although most of the experimental effort concentrated on developing an HMX formulation, blends containing RDX and TATB were also prepared. This report describes the results obtained from a study of the storage stability of a specific formulation containing 97.5:1.12:1.38 (wt%)-HMX:Kraton G1650:Cenco Hyvac oil,** referred to as X-0298.

II. BACKGROUND

Kraton G1650 is a thermoplastic rubber, structurally a styrene-ethylenebutylene-styrene (S-EB-S) block copolymer. The average peak molecular weight (\overline{MW}_p) of the material used in this work was about 1×10^5 (polystyrene equivalent), determined by gel permeation chromatography (GPC). Kraton is quite resistant to hydrolytic and oxidative degradation when stabilized with small amounts of antioxidants, such as Irganox or Ionol, and is used in applications that require rubber with these properties.³

*B. F. Goodrich Chemical Company, 6100 Oak Tree Boulevard, Cleveland, OH 44131.

**Shell Chemical Company, P. O. Box 1422, Houston, TX 77001.

**Central Scientific Company, Inc., 2600 South Kostner, Chicago, IL 60623.

Cenco Hyvac oil is a low-vapor-pressure, paraffinic, vacuum pump oil with an average molecular weight of about 500 (GPC). No additives were detected in the product used to prepare X-0298.

The X-0298 explosive molding powder is prepared by a standard slurry process, using butyl acetate as the slurry solvent. The resulting powder is quite uniform (1- to 2-mm particle size), with a bulk density of 0.98 g/cm^3 , and is easy to load and press. Charges attain a density of $1.81\text{--}1.82 \text{ g/cm}^3$ when pressed at about 120°C . Reference 4 gives a more detailed description of the explosive and material properties of X-0298.

III. EXPERIMENTAL METHOD

The experimental effort comprised two complementary studies. A number of small pressed cylinders (1.27 cm diam by 3.81 cm long, weighing 8.77 g each) and several 1.0-g samples of molding powder were stored at elevated temperatures for various time intervals to obtain data on the chemical stability of X-0298. The cylinders and molding powder were sealed in Pyrex ampoules containing 53 kPa (400 torr) of either dry air or helium. (Sample preparation is described in Ref. 2.) Larger pressed pieces (1.57 cm diam by 10.1 cm long, machined to a dumbbell shape) were sealed in stainless steel cans (five per can) and stored in ovens to collect information on the change in tensile properties. The cans initially contained 81 kPa (600 torr) of dry air.

All test units were placed in forced-draft temperature-controlled ovens. The small cylinders were stored at 60, 75, and 90°C , and the tensile specimens were stored at 40, 50, and 60°C . The molding powder samples were tested only at 75°C . At specified times, units were removed from the ovens and diagnostic tests were performed, including gas analyses, GPC of the extracted binder, and physical strength measurements on the pressed pieces.² In the present study, tetrahydrofuran (THF) was used as the extraction solvent instead of the dichloroethane (DCE) used previously because DCE did not completely extract the Kraton from the aged samples after 2 h on the wrist-action shaker.

IV. RESULTS AND DISCUSSION

Experimental data were collected on X-0298 small cylinders for 68 weeks at 60, 75, and 90°C , on molding powder for 34 weeks at 75°C , and on tensile specimens for 34 months at 40, 50, and 60°C .

A. Molding Powder and Small Cylinder Test Results

Tables I and II and Fig. 1 summarize the gas-evolution data obtained from these samples. Table III compares gas-evolution data for cylinders of PBX 9404, PBX 9501, and X-0298. Briefly, X-0298 evolved gas at about $30 \text{ cm}^3/\text{kg/yr}$ at 60°C in air, compared with $300 \text{ cm}^3/\text{kg/yr}$ for 9501, and $800 \text{ cm}^3/\text{kg/yr}$ for 9404. The gas evolved was mainly CO_2 and N_2 , in a ratio that implied HMX decomposition was the predominant gas-producing mechanism. Even at 90°C , the gas-evolution rate from the cylinders in air was only $1000 \text{ cm}^3/\text{kg/yr}$ (equivalent to about 0.2 wt% decomposition).

Molecular weight data obtained on the extracted binder are summarized in Table IV. Very little change occurred during the test period at any temperature. At 90°C , the Kraton began to show some decrease ($\sim 15\%$) in \overline{MW}_p and a larger dispersity, indicating the presence of increasing amounts of lower molecular

TABLE I

GAS EVOLUTION FROM SMALL CYLINDERS OF X-0298 STORED IN SEALED AMPOULES

(8.8-g pieces; $\rho = 1.815 \text{ g/cm}^3$)

Weeks	Temp ($^\circ\text{C}$)	Total Evolved Gas (cm^3/kg)	
		Helium Atm	Air Atm
8	60	1	1
	75	11	9
	90	40	90
16	60	2	2
	75	22	15
	90	110	180
34	60	7	4
	75	76	27
	90	440	490
68	60	17	39
	75	100	110
	90	2200	1400

TABLE II
GAS EVOLUTION FROM SMALL CYLINDERS
OF X-0298 STORED FOR 16 MONTHS
(8.8-g pieces; $\rho = 1.815 \text{ g/cm}^3$)

Temp (°C)	Helium			Air				
	TEG ^a (cm ³ /kg)	%CO _x	%N _x O _y	%Org	TEG (cm ³ /kg)	%CO _x	%N _x O _y	%Org
60	17	24	33	43	39	38	23	39
75	100	17	72	11	110	32	58	10
90	2200	29	70	1	1400	29	70	1

^aTEG = Total Evolved Gas

TABLE III
GAS EVOLUTION AT 60°C
(cm³/kg/yr)

	X-0298	9501	9404	
Air	30	300	800	
Inert	15	75	900	

weight material (Table V and Fig. 2). The HMX peak in the chromatogram interfered somewhat with the oil peak, but the oil peak changed little during the test. Infrared analysis of the extracted binder phase showed no evidence of oxidation products at any time (detection limit is about 0.1%).

B. Tensile Specimen Test Results

The tensile strength data obtained at intervals during a 34-month period on specimens stored at 40, 50, and 60°C are summarized in Table VI, which also includes the $\bar{M}W_p$ values obtained by GPC analysis on the extracted Kraton polymer. These data show that the physical strength of X-0298 is exceptionally constant. Very little change occurred in the tensile strength of the material during storage at any temperature—indeed, the strength increased slightly with time at 60°C. Of particular interest was the percent elongation at failure for the aged material. After a decrease of about 20% during the early stages of the test, no significant change occurred. The resulting values are 3 or 4 times greater than those of other energetic PBX formulations.

TABLE IV
POLYMER MOLECULAR WEIGHT DATA
(Small cylinders; $\rho = 1.815 \text{ g/cm}^3$)

	Temp (°C)	Weeks	$\bar{M}W_p^{(a)}$ (thousands)
Air Fill	60	8	106
		16	106
		34	106
		68	106
	75	8	103
		16	95
		34	103
		68	95
	90	8	95
		16	89
		34	94
		68	89
Helium Fill	Ambient	0	95
		16	95
		34	101
		68	91

^aAverage peak molecular weight (polystyrene equivalent). Differences of 10 000 in $\bar{M}W_p$ are probably insignificant.

C. Lifetime Predictions

Because very little change occurred in the molecular weight of Kraton polymer or the tensile strength of the

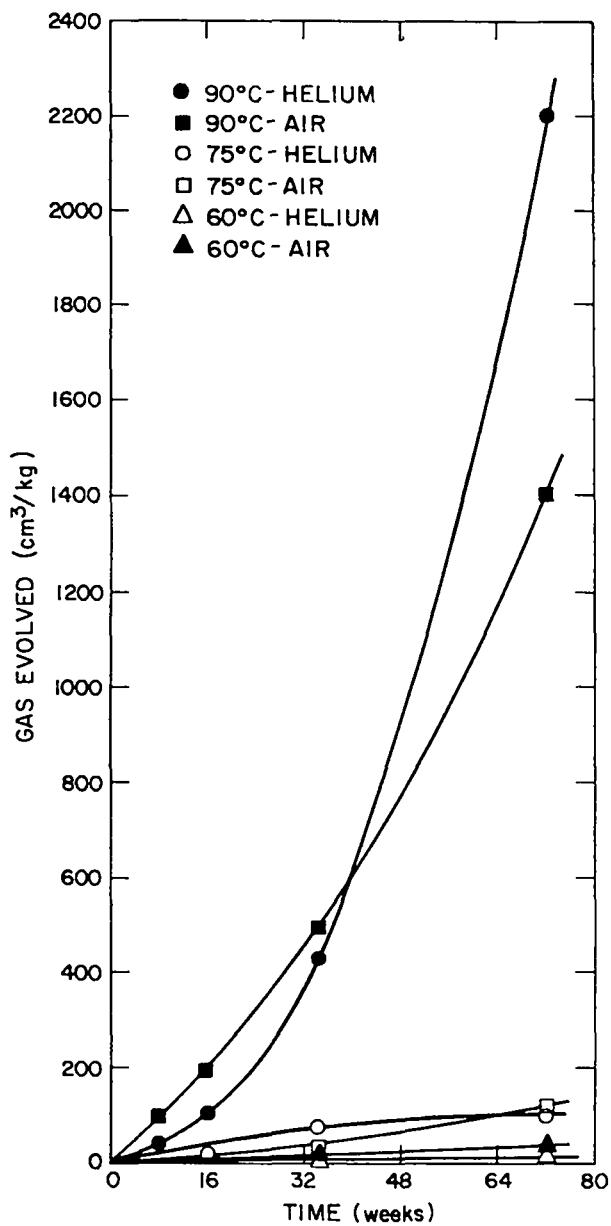


Fig. 1.
Gas evolved from X-0298 small cylinders stored in sealed containers.

pressed pieces, these data were not useful for construction of a model of lifetime predictions. However, we tried to devise a model based on the gas-evolution rates from the small cylinders stored at 75 and 90°C. Rate constants were calculated for the gas-evolution process observed under these test conditions. Figure 3 is a plot of $\ln(\text{cm}^3/\text{kg})$ vs time at 75 and 90°C for samples stored in air. Only four points at each temperature were used because the amount of gas evolved at times less than 8

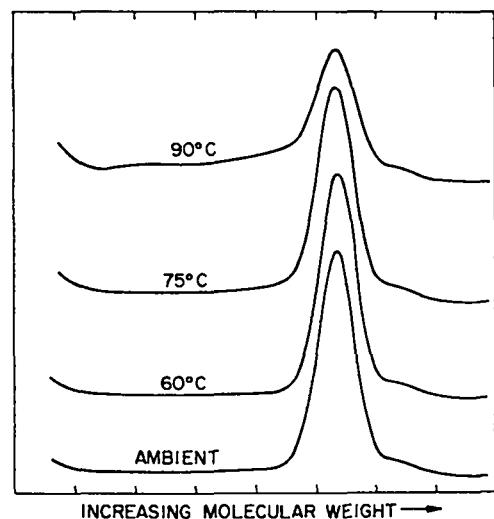


Fig. 2.
Gel permeation chromatograms of Kraton polymer from X-0298 stored for 16 months in air-filled containers.

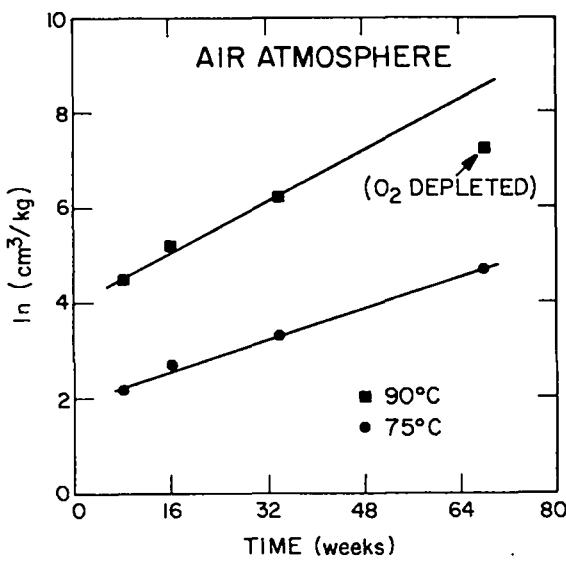


Fig. 3.
Rate constant plot.

weeks was insignificant. Even the amounts evolved at longer storage times were small, resulting in considerable scatter of the data points. The slopes of the lines through the points at 75 and 90°C gave rate constants of 6.7×10^{-8} and $10.7 \times 10^{-8} \text{ s}^{-1}$. We calculated an apparent activation energy E_a from the two rate constants for the gas evolution process. A value of about 8 kcal/mole was obtained. Although determined with only two points, an E_a of this magnitude suggests that the rate-determining

TABLE V
MOLECULAR WEIGHT OF KRATON POLYMER
IN X-0298 AFTER 16 MONTHS STORAGE

Temp (°C)	$\bar{M}_W^{\text{(a)}}$	$\bar{M}_N^{\text{(a)}}$	$\bar{M}_W^{\text{(a)}}$	$\bar{M}_W/\bar{M}_N^{\text{(a,b)}}$
60	106	104	112	1.077
75	95	84	95	1.131
90	89	68	86	1.265
Ambient	92	91	100	1.099

^aValues in thousands (polystyrene equivalent).

^bDispersity: monodisperse = 1.000; normal 1.5-5; broad >5. \bar{M}_w = weight average molecular weight; \bar{M}_n = number average molecular weight.

step in the process resulting in evolved gas is diffusion of decomposition products from the piece. Thus gas-evolution rates from X-0298 cannot be used to derive a model for lifetime predictions because evolution rates depend on configuration and porosity of the explosive charges. Therefore, data obtained in this study do not provide a suitable basis for a model of lifetime predictions, but they do indicate a stability of X-0298 much greater than 9404 and 9501.

V. CONCLUSION

This study demonstrates that X-0298, a Kraton-bonded HMX formulation, is an exceptionally

TABLE VI
X-0298 SURVEILLANCE DATA
4-in. Tensile Specimens: $\rho = 1.815$
(Stored in Sealed Cans, Air Atmosphere)

Time (months)	40°C			50°C			60°C		
	MW_p ($\times 10^3$)	Strength (kPa)	% Elong. (100 in./in.)	MW_p ($\times 10^3$)	Strength (kPa)	% Elong. (100 in./in.)	MW_p ($\times 10^3$)	Strength (kPa)	% Elong. (100 in./in.)
2	109	1385	0.45	111	1385	0.52	109	1490	0.46
4	---	1295	0.44	---	1450	0.45	---	1570	0.46
6	94	1325	0.46	95	1415	0.46	86	1600	0.38
8	101	1415	0.46	107	1525	0.47	106	1570	0.40
10	93	1360	0.31	109	1390	0.40	106	1475	0.34
12	110	1260	0.40	106	1370	0.47	107	1515	0.31
12	97	1460	0.45	97	1460	0.45	97	1460	0.45
(Ambient)									
14	106	1390	0.47	104	1415	0.45	100	1605	0.32
16	94	1380	0.39	99	1420	0.46	113	1570	0.31
18	86	1525	0.38	89	1640	0.35	104	1750	0.43
18	94	1725	0.47	94	1725	0.47	94	1725	0.47
(Ambient)									
22	97	1370	0.32	97	1385	0.44	100	1600	0.32
29	101	1435	0.36	95	1470	0.42	100	1660	0.35
29	95	---	---	95	---	---	95	---	---
(Ambient)									
34	79	1345	0.42	60	1345	0.35	80	1620	0.40
34	94	1380	0.54	94	1380	0.54	94	1380	0.54
(Ambient)									

stable, energetic explosive when stored in sealed containers at temperatures lower than 60°C. Even at 90°C the material is more stable than other energetic explosives stored at 60°C. The enhanced stability is a consequence of the chemical nature of the binder system (a thermoplastic rubber-type polymer plasticized with a paraffinic oil) combined with a small amount (about 10 ppm) of antioxidant. Increasing the antioxidant content by a factor of 20 will extend the lifetime of X-0298 beyond any present service requirement without detectably affecting the physical characteristics of the X-0298.

VI. ACKNOWLEDGMENTS

Kathleen Bostick, T. M. McKinney, and M. J. Naranjo obtained the molecular-weight and gas-evolution data, LASL Group WX-3 performed all the tensile tests, and T. M. Benziger provided continuing guidance and encouragement.

REFERENCES

1. T. M. Benziger, "X-0242: A High-Energy Plastic-Bonded Explosive," Los Alamos Scientific Laboratory report LA-4872-MS (February 1972).
2. E. M. Wewerka, E. D. Loughran, and J. M. Williams, "The Effects of Long-Term Storage at Elevated Temperatures on Small Cylinders of PBX 9501," Los Alamos Scientific Laboratory report LA-6302-MS (April 1976).
3. Geoffrey Holden, "New Developments in Block Copolymer Applications," *Polym. Sci. Technol.* 4, 269-70 (1974).
4. T. M. Benziger, E. D. Loughran, and R. K. Davey, "X-0298: A Rubber-Bonded PBX," Los Alamos Scientific Laboratory report LA-8436-MS (August 1980).

Printed in the United States of America
 Available from
 National Technical Information Service
 US Department of Commerce
 5285 Port Royal Road
 Springfield, VA 22161
 Microfiche \$3.50 (A01)

Page Range	Domestic Price	NTIS Price Code	Page Range	Domestic Price	NTIS Price Code	Page Range	Domestic Price	NTIS Price Code	Page Range	Domestic Price	NTIS Price Code
001-025	\$ 5.00	A02	151-175	\$11.00	A08	301-325	\$17.00	A14	451-475	\$23.00	A20
026-050	6.00	A03	176-200	12.00	A09	326-350	18.00	A15	476-500	24.00	A21
051-075	7.00	A04	201-225	13.00	A10	351-375	19.00	A16	501-525	25.00	A22
076-100	8.00	A05	226-250	14.00	A11	376-400	20.00	A17	526-550	26.00	A23
101-125	9.00	A06	251-275	15.00	A12	401-425	21.00	A18	551-575	27.00	A24
126-150	10.00	A07	276-300	16.00	A13	426-450	22.00	A19	576-600	28.00	A25
									601-up	†	A99

†Add \$1.00 for each additional 25-page increment or portion thereof from 601 pages up.

REPORT LIBRARY

JUN - 8 1961

RECEIVED